miércoles, 16 de abril de 2014

Aplicaciones del Principio de Bernoulli

Ecuación de Bernoulli y la Primera Ley de la Termodinámica

De la primera ley de la termodinámica se puede concluir una ecuación estéticamente parecida a la ecuación de Bernouilli anteriormente señalada, pero conceptualmente distinta. La diferencia fundamental yace en los límites de funcionamiento y en la formulación de cada fórmula. La ecuación de Bernoulli es un balance de fuerzas sobre una partícula de fluido que se mueve a través de una línea de corriente, mientras que la primera ley de la termodinámica consiste en un balance de energía entre los límites de un volumen de control dado, por lo cual es más general ya que permite expresar los intercambios energéticos a lo largo de una corriente de fluido, como lo son las pérdidas por fricción que restan energía, y las bombas o ventiladores que suman energía al fluido. La forma general de esta, llamémosla, "forma energética de la ecuación de Bernoulli" es:

\frac{{V_1}^2}{2 g}+\frac{P_1}{\gamma}+z_1\frac{g}{g_c}+ W = h_f + \frac{{V_2}^2}{2 g}+\frac{P_2}{\gamma}+z_2\frac{g}{g_c}
donde:
  • γ es el peso específico (γ = ρg).
  • W es una medida de la energía que se le suministra al fluido.
  • hf es una medida de la energía empleada en vencer las fuerzas de fricción a través del recorrido del fluido.
  • Los subíndices 1 y 2 indican si los valores están dados para el comienzo o el final del volumen de control respectivamente.
  • g = 9,81 m/s2 y gc = 1 kg·m/(N·s2)

Suposiciones

La ecuación arriba escrita es un derivado de la primera ley de la termodinámica para flujos de fluido con las siguientes características.
  • El fluido de trabajo, es decir, aquél que fluye y que estamos considerando, tiene una densidad constante.
  • No existe cambio de energía interna.

[Demostración

Escribamos la primera ley de la termodinámica con un criterio de signos termodinámico conveniente:

w + q = \Delta h + \Delta \frac{V^2}{2} + g \Delta z
Recordando la definición de la entalpía h = u + Pv, donde u es la energía interna y v se conoce como volumen específico v = 1 / ρ. Podemos escribir:

w + q = \Delta u + \Delta \frac{P}{\rho} + \Delta \frac{V^2}{2} + g \Delta z
que por la suposiciones declaradas más arriba se puede reescribir como:

w + q = \frac{P_2}{\rho} - \frac{P_1}{\rho} + \frac{{V_2}^2}{2} - \frac{{V_1}^2}{2} + g (z_2 - z_1)
dividamos todo entre el término de la aceleración de gravedad

\frac{w}{g} + \frac{q}{g} = \frac{P_2}{\gamma} - \frac{P_1}{\gamma} + \frac{{V_2}^2}{2 g} - \frac{{V_1}^2}{2 g} + z_2 - z_1
Los términos del lado izquierdo de la igualdad son relativos a los flujos de energía a través del volumen de control considerado, es decir, son las entradas y salidas de energía del fluido de trabajo en formas de trabajo (w) y calor (q). El término relativo al trabajo w / g consideraremos que entra al sistema, lo llamaremos h y tiene unidades de longitud, al igual que q / g, que llamaremos hf quién sale del sistema, ya que consideraremos que sólo se intercambia calor por vía de la fricción entre el fluido de trabajo y las paredes del conducto que lo contiene. Así la ecuación nos queda:

h -h_f= \frac{P_2}{\gamma} - \frac{P_1}{\gamma} + \frac{{V_2}^2}{2 g} - \frac{{V_1}^2}{2 g} + z_2 - z_1
o como la escribimos originalmente:

\frac{{V_1}^2}{2 g}+\frac{P_1}{\gamma}+z_1 + h = h_f + \frac{{V_2}^2}{2 g}+\frac{P_2}{\gamma}+z_2
Así, podemos observar que el principio de Bernoulli es una consecuencia directa de la primera ley de la termodinámica, o si se quiere, otra forma de esta ley. En la primera ecuación presentada en este artículo el volumen de control se había reducido a tan solo una línea de corriente sobre la cual no habían intercambios de energía con el resto del sistema, de aquí la suposición de que el fluido debería ser ideal, es decir, sin viscosidad ni fricción interna, ya que no existe un término hf entre las distintas líneas de corriente.

Aplicaciones del Principio de Bernoulli

Airsoft
Las réplicas usadas en este juego suelen incluir un sistema llamado HopUp que provoca que la bola sea proyectada realizando un efecto circular, lo que aumenta el alcance efectivo de la réplica. Este efecto es conocido como efecto Magnus, la rotación de la bola provoca que la velocidad del flujo por encima de ella sea mayor que por debajo, y con ello la aparición de una diferencia de presiones que crea la fuerza sustentadora, que hace que la bola tarde más tiempo en caer.
Chimenea
Las chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayor es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.
Tubería
La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.
Natación
La aplicación dentro de este deporte se ve reflejado directamente cuando las manos del nadador cortan el agua generando una menor presión y mayor propulsión.
Movimiento de una pelota o balón con efecto
Si lanzamos una pelota o un balón con efecto, es decir rotando sobre sí mismo, se desvía hacia un lado. También por el conocido efecto Magnus, típico es el balón picado, cuando el jugador mete el empeine por debajo del balón causándole un efecto rotatorio de forma que este traza una trayectoria parabólica. Es lo que conocemos como vaselina.
Carburador de automóvil
En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.
Flujo de fluido desde un tanque
La tasa de flujo está dada por la ecuación de Bernoulli.
Dispositivos de Venturi
En oxigenoterapia, la mayor parte de sistemas de suministro de débito alto utilizan dispositivos de tipo Venturi, el cual esta basado en el principio de Bernoulli.

 

No hay comentarios:

Publicar un comentario