miércoles, 23 de abril de 2014

CLASIFICACIÓN DE LAS BOMBAS

BOMBAS
Siempre que tratemos temas como procesos químicos, y de cualquier circulación de fluidos estamos, de alguna manera entrando en el tema de bombas.
El funcionamiento en si de la bomba será el de un convertidor de energía, o sea, transformara la energía mecánica en energía cinética, generando presión y velocidad en el fluido.
Existen muchos tipos de bombas para diferentes aplicaciones.
Los factores más importantes que permiten escoger un sistema de bombeo adecuado son: presión última, presión de proceso, velocidad de bombeo, tipo de gases a bombear (la eficiencia de cada bomba varía según el tipo de gas).
Las bombas se clasifican en tres tipos principales:
  1. De émbolo alternativo
  2. De émbolo rotativo
  3. Rotodinámicas
Los dos primeros operan sobre el principio de desplazamiento positivo y el tercer tipo debe su nombre a un elemento rotativo, llamado rodete, que comunica velocidad al líquido y genera presión, estas son de desplazamiento no positivo.
Se dice que una bomba es de desplazamiento positivo, cuando su órgano propulsor contiene elementos móviles de modo tal que por cada revolución se genera de manera positiva un volumen dado o cilindrada, independientemente de la contrapresión a la salida. En este tipo de bombas la energía mecánica recibida se transforma directamente en energía de presión que se transmite hidrostáticamente en el sistema hidráulico.
En las bombas de desplazamiento positivo siempre debe permanecer la descarga abierta, pues a medida que la misma se obstruya, aumenta la presión en el circuito  hasta alcanzar valores que pueden ocasionar la rotura de la bomba; por tal causal siempre  se debe colocar inmediatamente a la salida de la bomba una válvula de alivio o de seguridad. con una descarga a tanque y con registro de presión.
Se dice que una bomba es de desplazamiento No positivo cuando su órgano propulsar no contiene elementos móviles; es decir, que es de una sola pieza, o de varias ensambladas en una sola.
A este caso pertenecen las bombas centrífugas, cuyo elemento propulsor es el rodete giratorio. En este tipo de bombas, se transforma la energía mecánica recibida en energía hidro-cinética  imprimiendo a las partículas cambios en la proyección de sus trayectorias y en la dirección de sus velocidades. Es muy importante en este tipo de bombas que la descarga de las mismas no tenga contrapresión pues si la hubiera, dado que la misma regula la descarga  , en el caso límite que la descarga de la bomba estuviera totalmente cerrada, la misma seguiría en movimiento no generando caudal alguno trabajando no obstante a plena carga con el máximo consumo de fuerza matriz.
Por las características señaladas, en los sistemas hidráulicos de transmisión hidrostática de potencia hidráulica  nunca se emplean bombas de desplazamiento NO positivo.
DESCRIPCIÓN DE BOMBAS DE DESPLAZAMIENTO POSITIVO
BOMBAS ROTATORIAS
Las bombas rotatorias, que generalmente son unidades de desplazamiento positivo, consisten de una caja fija que contiene engranajes, aspas, pistones, levas, segmentos, tornillos, etc., que operan con un claro mínimo. En lugar de "arrojar" el liquido, como en una bomba centrífuga, una bomba rotatoria lo atrapa, lo empuja contra la caja fija. La bomba rotatoria descarga un flujo continuo. Aunque generalmente se les considera como bombas para líquidos viscosos, las bombas rotatorias no se limitan a este servicio solo, pueden manejar casi cualquier liquido que este libre de sólidos abrasivos.
Tipos de bombas rotatorias:
Bombas de Leva y Pistón
También llamadas "Bombas de émbolo rotatorio", consisten de un excéntrico con un brazo ranurado en la parte superior (Fig. 1). La rotación de la flecha hace que el excéntrico atrape el liquido contra la caja. Conforme continúa la rotación, el liquido se fuerza de la caja a través de la ranura a la salida de la bomba.

Fig. 1
Bombas de engranajes externos
Estas constituyen el tipo rotatorio mas simple. Conforme los dientes de los engranajes se separan en el lado de succión de la bomba (Fig. 2), el liquido llena el espacio entre ellos. Este se conduce en trayectoria circular hacia fuera y es exprimido al engranar nuevamente los dientes.

Fig. 2
Bombas de engranajes internos
Este tipo (Fig. 3) tiene un motor con dientes cortados internamente y que encajan en un engrane loco, cortado externamente. Puede usarse una partición en forma de luna creciente para evitar que el liquido pase de nuevo al lado de succión de la bomba.

Fig. 3
Bombas lobulares
Éstas se asemejan a las bombas del tipo de engranajes en su forma de acción, tienen dos o mas motores cortados con tres, cuatro, o mas lóbulos en
cada motor (Fig. 4, 5 y 6). Los motores se sincronizan para obtener una rotación positiva por medio de engranajes externos. Debido al que el liquido se descarga en un numero mas reducido de cantidades mayores que en el caso de la bomba de engranajes, el flujo del tipo lobular no es tan constante como en la bomba del tipo de engranajes.



 Bombas de tornillo
Estas bombas tienen de uno a tres tornillos roscados convenientemente que giran en una caja fija. Las bombas de un solo tornillo (Fig. 7) tienen un motor en forma de espiral que gira excéntricamente en un estator de hélice interna o cubierta. Las bombas de dos y tres tornillos (Fig. 8 y 9) tienen uno o dos engranajes locos, respectivamente, el flujo se establece entre las roscas de los tornillos, y a lo largo del eje de los mismos.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Bombas de aspas
Las bombas de aspas oscilantes (Fig. 10) tienen una serie de aspas articuladas que se balancean conforme gira el motor, atrapando al liquido y forzándolo en el tubo de descarga de la bomba. Las bombas de aspas deslizantes (Fig. 11) usan aspas que se presionan contra la carcaza por la fuerza centrífuga cuando gira el motor. El liquido atrapado entre las dos aspas se conduce y fuerza hacia la descarga de bomba.
Para ver el gráfico seleccione la opción "Descargar" del menú superior 
 BOMBAS ALTERNATIVAS
Las bombas alternativas o reciprocantes son también unidades de desplazamiento positivo descargan una cantidad definida de liquido durante el movimiento del pistón o émbolo a través de la distancia de carrera.
Tipos de bombas alternativas
El flujo de descarga de las bombas centrífugas y de la mayor parte de las bombas rotatorias es continuo. Pero en las bombas alternativas el flujo pulsa, dependiendo del carácter de la pulsación del tipo de bomba y de que esta tenga o no una cámara de colchón.
Igual que otras bombas, las bombas alternativas no succionan los líquidos. Reducen solamente la presión en la cámara de succión y la presión externa, generalmente la atmosférica, empuja el liquido en la bomba. Para cualquier bomba con una línea de succión de tamaño dado, la capacidad o velocidad máxima viene fijada por la columna de succión neta positiva.
Existen básicamente dos tipos de bombas alternativas: las de acción directa, movidas por vapor y las bombas de potencia.
Bombas de acción directa
En este tipo, una varilla común de pistón conecta un pistón de vapor y uno de liquido (Fig. 12) o émbolo (Fig. 13). Las bombas de acción directa se construyen, simplex (un pistón de vapor y un pistón de liquido respectivamente) y duplex (dos pistones de vapor y dos de liquido).
Para ver el gráfico seleccione la opción "Descargar" del menú superior 
Fig. 12
Las bombas de acción directa horizontales simples y duplex, han sido por mucho tiempo muy usadas para diferentes servicios, incluyendo alimentación de calderas en presiones de bajas a medianas, manejo de lodos, bombeo de aceite y agua, etc. Se caracterizan por la facilidad de ajuste de columna, velocidad y capacidad. Al igual que todas las bombas alternativas, las unidades de acción directa tienen un flujo de descarga pulsante.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Bombas de potencia
Estas (Fig. 14 a 17) tienen un cigüeñal movido por una fuente externa (generalmente un motor eléctrico), banda o cadena. Frecuentemente se usan engranajes entre el motor y el cigüeñal para reducir la velocidad de salida del elemento motor.
El extremo liquido que puede ser del tipo de pistón o émbolo desarrollara una presión elevada cuando se cierra la válvula de descarga. Por esta razón es común el proporcionar una válvula de alivio para descarga, con objeto de proteger la bomba y su tubería. Las bombas de acción directa se detienen cuando la fuerza total en el pistón del agua iguala a la del pistón de vapor; las bombas de potencia desarrollan una presión muy elevada antes de detenerse. Esta es varias veces la presión de descarga normal de las bombas de potencia.
Las bombas de potencia se encuentran particularmente bien adaptadas para servicios de alta presión y tienen algunos usos en la alimentación de calderas, bombeo en líneas de tuberías, procesos de obtención de petróleos y aplicaciones similares.
Las bombas de potencia en los primeros diseños eran generalmente movidas por vapor. En el presente, sin embargo, es mas común el movimiento por motor eléctrico o de combustión interna debido a que este arreglo da una instalación mas económica compacta y requiere menos mantenimiento. Las bombas de potencias del tipo émbolo de alta presión pueden ser horizontales o verticales (Fig. 15 y 17).
Para ver los gráficos seleccione la opción "Descargar" del menú superior 
Bombas de potencia de baja capacidad
Estas unidades se conocen también como bombas de capacidad variable, volumen controlado y de proporción. Su uso principal es para controlar el flujo de pequeñas cantidades de liquido para alimentar calderas, equipos de procesos y unidades similares. Como tales ocupan un lugar muy importante en muchas operaciones industriales en todo tipo de plantas.

Fig. 18
La capacidad de estas bombas puede variarse cambiando la longitud de la carrera. La unidad en la figura 18 usa un diafragma para bombear el liquido que se maneja, pero el diafragma esta accionado por un émbolo que desplaza aceite dentro de la cámara de la bomba. Cambiando la longitud de la carrera del émbolo se varia el desplazamiento del diafragma.
Bombas de diafragma
La bomba combinada de diafragma y pistón (Fig. 18) generalmente se usa solo para capacidades pequeñas. Un diafragma de material flexible no metálico puede soportar mejor la acción corrosiva o erosiva que las partes metálicas de algunas bombas alternativas. Las bombas de diafragma (Fig. 19 y 20) se usan para gastos elevados de líquidos, ya sea claros o conteniendo sólidos. También son apropiados para pulpas gruesas, drenajes, lodos, soluciones ácidas y alcalinas, así como mezclas de agua con sólidos que pueden ocasionar erosión. La bomba de rocío de diafragma de alta velocidad y pequeño desplazamiento (Fig. 21) esta provista de una succión del tipo discoidal y válvulas de descarga. Ha sido diseñada para manejar productos químicos.
Otros diseños
Existen también un gran numero de otros tipos de bombas alternativas, diseñadas para servicios especializados. Muchas se usan en sistemas hidráulicos industriales, de lubricación, de manejo de químicos, y similares.
DESCRIPCIÓN DE BOMBAS DE DESPLAZAMIENTO NO POSITIVO
Bombas centrífugas
Las industrias químicas son usuarios principales de bombas de todos los tipos, pero en particular de las centrífugas.
Las bombas centrífugas, también denominadas rotativas, tienen un motor de paletas giratorio sumergido en el liquido. El liquido entra en la bomba cerca del eje del motor, y las paletas lo arrastran hacia sus extremos a alta presión. El motor también proporciona al liquido una velocidad relativamente alta, que puede transformarse en presión en una parte estacionaria de la bomba, conocida como difusor. En bombas de alta presión pueden emplearse varios motores en serie, y los difusores posteriores a cada motor pueden contener aletas de guía para reducir poco a poco la velocidad del liquido. En las bombas de baja presión, el difusor suele ser un canal en espiral cuya superficie transversal aumente de forma gradual para reducir la velocidad. El motor debe ser cebado antes de empezar a funcionar, es decir, debe estar rodeado de liquido cuando se arranca la bomba.
La gran holgura ofrecida en este tipo de bombas al paso de los fluidos, hace que estas resulten adecuadas para la manipulación de fluidos que lleven en suspensión partículas sólidas, y además permiten el estrangulado o aun el cierre temporal de la válvula de la tubería de descarga (de impulsión). En este caso extremo, el fluido simplemente gira en el interior de la caja y absorbe la energía cedida por el motor. La absorción total de la energía eleva rápidamente la temperatura del fluido y la de la bomba lo suficiente para poder causar el desajuste de las partes móviles en poco tiempo. En general las bombas centrífugas son mas fáciles de construir que las bombas alternativa de desplazamiento positivo, o las rotatorias. La bomba centrífuga resulta especialmente mas apta para la manipulación de líquidos viscosos que la bomba alternativa, aunque es menos adecuada que la bomba rotatoria.
Las ventajas primordiales de una bomba centrífuga son la simplicidad, el bajo costo inicial, el flujo uniforme ( sin pulsaciones), el pequeño espacio necesario para su instalación, los costos bajos de mantenimiento, el funcionamiento silencioso y su capacidad de adaptación para su uso con impulsos por motor o turbina. Además tiene gran capacidad por el poco rendimiento a bajo flujo, y por eso su empleo esta limitado a las grandes plantas. No exigen gran espacio, y para líquidos no viscosos los rendimientos son comparables a los de otros tipos para mayores capacidades.
Tipos de bomba centrífugas
Bombas voluta
(Fig. 22) aquí el impulsor descarga en una caja espiral que se expande progresivamente, proporcionada en tal forma que la velocidad del líquido se reduce en forma gradual. Por este medio, parte de la energía de velocidad del liquido se convierte en presión estática.
Bombas difusor
(Fig. 23) los paletas direccionales estacionarios rodean el motor
o impulsor en una bomba del tipo difusor. Esos pasajes con expansión gradual cambian la dirección del flujo del liquido y convierten la energía de velocidad a columna de presión.



Bombas turbina
También se conocen como bombas de vórtice, periféricas y regenerativas; en este tipo se producen remolinos en el liquido por medio de los paletas a velocidades muy altas dentro del canal anular en el que gira el impulsor. El liquido va recibiendo impulsos de energía (Fig. 24). La bomba del tipo difusor de pozo profundo, se llaman frecuentemente bombas turbinas.
Bombas de flujo mixto y axial
Para ver los gráficos seleccione la opción "Descargar" del menú superior
Las bombas de flujo mixto (Fig. 25) desarrollan su columna parcialmente por fuerzas centrífugas y parcialmente por el impulsor de los paletas sobre el liquido. El diámetro de descarga de los impulsores es mayor que el de entrada. Las bombas de flujo axial (Fig. 26) desarrollan su columna por la acción de impulso o elevación de las paletas sobre el liquido. El diámetro del impulsor es el mismo en el lado de succión y en el de descarga. Una bomba de impulsor es un tipo de bomba axial.
Clasificación según aplicación
Aun cuando no todas las bombas centrífugas están clasificadas por un nombre genérico que designa su aplicación final, un gran numero de ellas incluyen este termino relacionado con su servicio. Así, las bombas centrífugas pueden llamarse de alimentación de calde4ra, de propósito general, de sumidero, pozo profundo, de refinería, de circulación, etc. En general, cada una tiene características especificas de diseño, así como los materiales que el constructor recomienda para el servicio particular.
Hay aun otra subdivisión basada en las características estructurales y generales; tales como unidades horizontales y verticales, diseños de acoplamiento directo, impulsores de succión simple y doble, carcasas divididas horizontalmente, etc.
Diseños normales típicos de bombas
Bombas de propósito general: estas (Fig. 27) están construidas generalmente para manejar líquidos frescos y limpios a temperaturas ambiente o moderadas. Generalmente de un solo paso, estas unidades pueden ser de carcasa divida y aditamentos normales; igualmente buenas para un gran numero de servicios. Algunas son de varios impulsores, mientras que otras manejan líquidos que contienen sólidos en suspensión.
Para ver los gráficos seleccione la opción "Descargar" del menú superior
Bombas múltiples
Las unidades horizontales de este diseño (Fig. 28), están construidas con carcasa ya sea del tipo barril o del tipo horizontalmente dividido. La carcasa del tipo barril se usa mas comúnmente en diseños de alta presión con cuatro o mas pasos, mientras que la carcasa dividida se usa para presiones que varían desde bajas hasta moderadamente altas con cualquier numero de pasos.
Bombas acopladas directamente
Estas (Fig. 29) combinan la bomba y su motor en una sola unidad, proporcionando una bomba compacta, maciza y eficiente.

Bombas inatascables
Pueden o no tener impulsores de paleta, y estas unidades manejan líquidos de drenaje, de proceso en fabricas de papel, líquidos viscosos y otros similares que contengan sólidos.
Bombas turbinas regenerativas
Estas tienen limitaciones perfectamente definidas en cuanto a columna y capacidad mas allá de las cuales no puede competir económicamente con la bomba centrífuga usual. Sin embargo, dentro de su margen de aplicación tienen ventajas apreciables, incluyendo buenas características de succión, capacidad muy elevada y buena eficiencia.
PROBLEMAS DE FUNCIONAMIENTO DE LAS BOMBAS
Para obtener los resultados deseados, las características de las bombas deben ser compatibles con las condiciones reales de funcionamiento. Antes de aplicar una bomba, conviene hacer un análisis de las características del sistema de funcionamiento, en el cual deben tenerse en cuenta los siguientes factores:
  1. Capacidad con descripción de las posibles variaciones
  2. Presiones máxima y mínima, pulsaciones y variaciones
  3. Plan completo de las condiciones de succión
  4. Margen de la temperatura de funcionamiento
  5. Propiedades del liquido: densidad, viscosidad, corrosión, abrasión y comprensibilidad
  6. Accionamiento y control
  7. Clasificación del servicio en continuo o intermitente
Los caracteres mecánicos de las bombas son impuestos por las condiciones de la operación, como presiones, temperaturas, condiciones de succión y liquido bombeado. Los caracteres hidráulicos son inherentes a cada tipo de bomba y están influidos por la densidad, viscosidad, tipo de accionamiento y tipo de control.
El diseño mecánico se basa en la presión que ha de manejarse y es importante la revisión de los valores máximos, cargas de choque y variaciones de presión antes de elegir la bomba. Los materiales utilizados para las partes componentes deben determinarse de acuerdo con las exigencias de resistencia mecánica, resistencia a la corrosión y a la erosión o a la combinación de estas. Las velocidades en los pasajes de la bomba son mucho mas altas que las que se dan en las tuberías y vasijas de presión, con la consecuencia de que los efectos corrosivos o abrasivos del liquido. Es posible que la duración de la bomba sea muy limitada a causa del alto grado de corrosión y erosión, y a veces esta justificado el empleo de materiales resistentes en las zonas criticas. También las temperaturas por encima de 120º C o por debajo de –18º C pueden afectar a la construcción. Las temperaturas elevadas exigen el enfriamiento por agua de los cojinetes y las cajas de empaquetadura; las bajas temperaturas requieren materiales de resistencia adecuados a la temperatura de funcionamiento.
La mayor parte de las dificultades en las bombas provienen de las incorrectas condiciones de succión mas que de otra causa. La perdida de succión, la vaporización, el relleno parcial o la cavitación, llevan consigo una carga normal sobre la bomba y ocasionan alto costo de mantenimiento poca duración y funcionamiento irregular.
Los líquidos limpios fríos y no corrosivos con acción lubricante no presentan problemas. Los líquidos no lubricantes, como el propano, y las mezclas abrasivas, como los catalizadores pulverizados, deben mantenerse fuera del contacto con las empaquetaduras por un liquido aislante inyectado en el anillo de engrase o dentro de un casquillo de inyección para lubricar la empaquetadura y evitar que los sólidos se incrusten en ella.
La viscosidad del liquido que se bombea afecta igualmente a la potencia requerida y a la velocidad de bombeo. Las bombas de vaivén trabajan muy bien los líquidos viscosos pero pueden ser necesarias válvulas extra de succión para reducir las perdidas y la bomba puede funcionar a una velocidad mas baja. Las bombas rotatorias de alta presión no son económicas para líquidos extremadamente viscosos. La capacidad y el diseño de las bombas centrífugas se basan en una viscosidad igual a la del agua y son muy sensibles al aumento de viscosidad.
Las velocidades relativamente altas conducen a perdidas por turbulencia.

jueves, 17 de abril de 2014

BOMBAS

BOMBAS
Siempre que tratemos temas como procesos químicos, y de cualquier circulación de fluidos estamos, de alguna manera entrando en el tema de bombas.
El funcionamiento en si de la bomba será el de un convertidor de energía, o sea, transformara la energía mecánica en energía cinética, generando presión y velocidad en el fluido.
Existen muchos tipos de bombas para diferentes aplicaciones.
Los factores más importantes que permiten escoger un sistema de bombeo adecuado son: presión última, presión de proceso, velocidad de bombeo, tipo de gases a bombear (la eficiencia de cada bomba varía según el tipo de gas).
Las bombas se clasifican en tres tipos principales:
  1. De émbolo alternativo
  2. De émbolo rotativo
  3. Rotodinámicas
Los dos primeros operan sobre el principio de desplazamiento positivo y el tercer tipo debe su nombre a un elemento rotativo, llamado rodete, que comunica velocidad al líquido y genera presión, estas son de desplazamiento no positivo.
Se dice que una bomba es de desplazamiento positivo, cuando su órgano propulsor contiene elementos móviles de modo tal que por cada revolución se genera de manera positiva un volumen dado o cilindrada, independientemente de la contrapresión a la salida. En este tipo de bombas la energía mecánica recibida se transforma directamente en energía de presión que se transmite hidrostáticamente en el sistema hidráulico.
En las bombas de desplazamiento positivo siempre debe permanecer la descarga abierta, pues a medida que la misma se obstruya, aumenta la presión en el circuito  hasta alcanzar valores que pueden ocasionar la rotura de la bomba; por tal causal siempre  se debe colocar inmediatamente a la salida de la bomba una válvula de alivio o de seguridad. con una descarga a tanque y con registro de presión.
Se dice que una bomba es de desplazamiento No positivo cuando su órgano propulsar no contiene elementos móviles; es decir, que es de una sola pieza, o de varias ensambladas en una sola.
A este caso pertenecen las bombas centrífugas, cuyo elemento propulsor es el rodete giratorio. En este tipo de bombas, se transforma la energía mecánica recibida en energía hidro-cinética  imprimiendo a las partículas cambios en la proyección de sus trayectorias y en la dirección de sus velocidades. Es muy importante en este tipo de bombas que la descarga de las mismas no tenga contrapresión pues si la hubiera, dado que la misma regula la descarga  , en el caso límite que la descarga de la bomba estuviera totalmente cerrada, la misma seguiría en movimiento no generando caudal alguno trabajando no obstante a plena carga con el máximo consumo de fuerza matriz.

Por las características señaladas, en los sistemas hidráulicos de transmisión hidrostática de potencia hidráulica  nunca se emplean bombas de desplazamiento NO positivo.
DESCRIPCIÓN DE BOMBAS DE DESPLAZAMIENTO POSITIVO
BOMBAS ROTATORIAS
Las bombas rotatorias, que generalmente son unidades de desplazamiento positivo, consisten de una caja fija que contiene engranajes, aspas, pistones, levas, segmentos, tornillos, etc., que operan con un claro mínimo. En lugar de "arrojar" el liquido, como en una bomba centrífuga, una bomba rotatoria lo atrapa, lo empuja contra la caja fija. La bomba rotatoria descarga un flujo continuo. Aunque generalmente se les considera como bombas para líquidos viscosos, las bombas rotatorias no se limitan a este servicio solo, pueden manejar casi cualquier liquido que este libre de sólidos abrasivos.
Tipos de bombas rotatorias:
Bombas de Leva y Pistón
También llamadas "Bombas de émbolo rotatorio", consisten de un excéntrico con un brazo ranurado en la parte superior (Fig. 1). La rotación de la flecha hace que el excéntrico atrape el liquido contra la caja. Conforme continúa la rotación, el liquido se fuerza de la caja a través de la ranura a la salida de la bomba.
Fig. 1
Bombas de engranajes externos
Estas constituyen el tipo rotatorio mas simple. Conforme los dientes de los engranajes se separan en el lado de succión de la bomba (Fig. 2), el liquido llena el espacio entre ellos. Este se conduce en trayectoria circular hacia fuera y es exprimido al engranar nuevamente los dientes.
Fig. 2
Bombas de engranajes internos
Este tipo (Fig. 3) tiene un motor con dientes cortados internamente y que encajan en un engrane loco, cortado externamente. Puede usarse una partición en forma de luna creciente para evitar que el liquido pase de nuevo al lado de succión de la bomba.
Fig. 3
Bombas lobulares
Éstas se asemejan a las bombas del tipo de engranajes en su forma de acción, tienen dos o mas motores cortados con tres, cuatro, o mas lóbulos en
cada motor (Fig. 4, 5 y 6). Los motores se sincronizan para obtener una rotación positiva por medio de engranajes externos. Debido al que el liquido se descarga en un numero mas reducido de cantidades mayores que en el caso de la bomba de engranajes, el flujo del tipo lobular no es tan constante como en la bomba del tipo de engranajes.
 Bombas de tornillo
Estas bombas tienen de uno a tres tornillos roscados convenientemente que giran en una caja fija. Las bombas de un solo tornillo (Fig. 7) tienen un motor en forma de espiral que gira excéntricamente en un estator de hélice interna o cubierta. Las bombas de dos y tres tornillos (Fig. 8 y 9) tienen uno o dos engranajes locos, respectivamente, el flujo se establece entre las roscas de los tornillos, y a lo largo del eje de los mismos.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Bombas de aspas
Las bombas de aspas oscilantes (Fig. 10) tienen una serie de aspas articuladas que se balancean conforme gira el motor, atrapando al liquido y forzándolo en el tubo de descarga de la bomba. Las bombas de aspas deslizantes (Fig. 11) usan aspas que se presionan contra la carcaza por la fuerza centrífuga cuando gira el motor. El liquido atrapado entre las dos aspas se conduce y fuerza hacia la descarga de bomba.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
 BOMBAS ALTERNATIVAS

Las bombas alternativas o reciprocantes son también unidades de desplazamiento positivo descargan una cantidad definida de liquido durante el movimiento del pistón o émbolo a través de la distancia de carrera.
Tipos de bombas alternativas
El flujo de descarga de las bombas centrífugas y de la mayor parte de las bombas rotatorias es continuo. Pero en las bombas alternativas el flujo pulsa, dependiendo del carácter de la pulsación del tipo de bomba y de que esta tenga o no una cámara de colchón.
Igual que otras bombas, las bombas alternativas no succionan los líquidos. Reducen solamente la presión en la cámara de succión y la presión externa, generalmente la atmosférica, empuja el liquido en la bomba. Para cualquier bomba con una línea de succión de tamaño dado, la capacidad o velocidad máxima viene fijada por la columna de succión neta positiva.
Existen básicamente dos tipos de bombas alternativas: las de acción directa, movidas por vapor y las bombas de potencia.
Bombas de acción directa
En este tipo, una varilla común de pistón conecta un pistón de vapor y uno de liquido (Fig. 12) o émbolo (Fig. 13). Las bombas de acción directa se construyen, simplex (un pistón de vapor y un pistón de liquido respectivamente) y duplex (dos pistones de vapor y dos de liquido).
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Fig. 12
Las bombas de acción directa horizontales simples y duplex, han sido por mucho tiempo muy usadas para diferentes servicios, incluyendo alimentación de calderas en presiones de bajas a medianas, manejo de lodos, bombeo de aceite y agua, etc. Se caracterizan por la facilidad de ajuste de columna, velocidad y capacidad. Al igual que todas las bombas alternativas, las unidades de acción directa tienen un flujo de descarga pulsante.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Bombas de potencia
Estas (Fig. 14 a 17) tienen un cigüeñal movido por una fuente externa (generalmente un motor eléctrico), banda o cadena. Frecuentemente se usan engranajes entre el motor y el cigüeñal para reducir la velocidad de salida del elemento motor.
El extremo liquido que puede ser del tipo de pistón o émbolo desarrollara una presión elevada cuando se cierra la válvula de descarga. Por esta razón es común el proporcionar una válvula de alivio para descarga, con objeto de proteger la bomba y su tubería. Las bombas de acción directa se detienen cuando la fuerza total en el pistón del agua iguala a la del pistón de vapor; las bombas de potencia desarrollan una presión muy elevada antes de detenerse. Esta es varias veces la presión de descarga normal de las bombas de potencia.
Las bombas de potencia se encuentran particularmente bien adaptadas para servicios de alta presión y tienen algunos usos en la alimentación de calderas, bombeo en líneas de tuberías, procesos de obtención de petróleos y aplicaciones similares.
Las bombas de potencia en los primeros diseños eran generalmente movidas por vapor. En el presente, sin embargo, es mas común el movimiento por motor eléctrico o de combustión interna debido a que este arreglo da una instalación mas económica compacta y requiere menos mantenimiento. Las bombas de potencias del tipo émbolo de alta presión pueden ser horizontales o verticales (Fig. 15 y 17).
Para ver los gráficos seleccione la opción "Descargar" del menú superior 
Bombas de potencia de baja capacidad
Estas unidades se conocen también como bombas de capacidad variable, volumen controlado y de proporción. Su uso principal es para controlar el flujo de pequeñas cantidades de liquido para alimentar calderas, equipos de procesos y unidades similares. Como tales ocupan un lugar muy importante en muchas operaciones industriales en todo tipo de plantas.
Fig. 18
La capacidad de estas bombas puede variarse cambiando la longitud de la carrera. La unidad en la figura 18 usa un diafragma para bombear el liquido que se maneja, pero el diafragma esta accionado por un émbolo que desplaza aceite dentro de la cámara de la bomba. Cambiando la longitud de la carrera del émbolo se varia el desplazamiento del diafragma.
Bombas de diafragma
La bomba combinada de diafragma y pistón (Fig. 18) generalmente se usa solo para capacidades pequeñas. Un diafragma de material flexible no metálico puede soportar mejor la acción corrosiva o erosiva que las partes metálicas de algunas bombas alternativas. Las bombas de diafragma (Fig. 19 y 20) se usan para gastos elevados de líquidos, ya sea claros o conteniendo sólidos. También son apropiados para pulpas gruesas, drenajes, lodos, soluciones ácidas y alcalinas, así como mezclas de agua con sólidos que pueden ocasionar erosión. La bomba de rocío de diafragma de alta velocidad y pequeño desplazamiento (Fig. 21) esta provista de una succión del tipo discoidal y válvulas de descarga. Ha sido diseñada para manejar productos químicos.
Para ver los gráficos seleccione la opción "Descargar" del menú superior
Fig. 20 Fig. 21
Otros diseños
Existen también un gran numero de otros tipos de bombas alternativas, diseñadas para servicios especializados. Muchas se usan en sistemas hidráulicos industriales, de lubricación, de manejo de químicos, y similares.
DESCRIPCIÓN DE BOMBAS DE DESPLAZAMIENTO NO POSITIVO
Bombas centrífugas

Las industrias químicas son usuarios principales de bombas de todos los tipos, pero en particular de las centrífugas.
Las bombas centrífugas, también denominadas rotativas, tienen un motor de paletas giratorio sumergido en el liquido. El liquido entra en la bomba cerca del eje del motor, y las paletas lo arrastran hacia sus extremos a alta presión. El motor también proporciona al liquido una velocidad relativamente alta, que puede transformarse en presión en una parte estacionaria de la bomba, conocida como difusor. En bombas de alta presión pueden emplearse varios motores en serie, y los difusores posteriores a cada motor pueden contener aletas de guía para reducir poco a poco la velocidad del liquido. En las bombas de baja presión, el difusor suele ser un canal en espiral cuya superficie transversal aumente de forma gradual para reducir la velocidad. El motor debe ser cebado antes de empezar a funcionar, es decir, debe estar rodeado de liquido cuando se arranca la bomba.
La gran holgura ofrecida en este tipo de bombas al paso de los fluidos, hace que estas resulten adecuadas para la manipulación de fluidos que lleven en suspensión partículas sólidas, y además permiten el estrangulado o aun el cierre temporal de la válvula de la tubería de descarga (de impulsión). En este caso extremo, el fluido simplemente gira en el interior de la caja y absorbe la energía cedida por el motor. La absorción total de la energía eleva rápidamente la temperatura del fluido y la de la bomba lo suficiente para poder causar el desajuste de las partes móviles en poco tiempo. En general las bombas centrífugas son mas fáciles de construir que las bombas alternativa de desplazamiento positivo, o las rotatorias. La bomba centrífuga resulta especialmente mas apta para la manipulación de líquidos viscosos que la bomba alternativa, aunque es menos adecuada que la bomba rotatoria.
Las ventajas primordiales de una bomba centrífuga son la simplicidad, el bajo costo inicial, el flujo uniforme ( sin pulsaciones), el pequeño espacio necesario para su instalación, los costos bajos de mantenimiento, el funcionamiento silencioso y su capacidad de adaptación para su uso con impulsos por motor o turbina. Además tiene gran capacidad por el poco rendimiento a bajo flujo, y por eso su empleo esta limitado a las grandes plantas. No exigen gran espacio, y para líquidos no viscosos los rendimientos son comparables a los de otros tipos para mayores capacidades.
Tipos de bomba centrífugas
Bombas voluta
(Fig. 22) aquí el impulsor descarga en una caja espiral que se expande progresivamente, proporcionada en tal forma que la velocidad del líquido se reduce en forma gradual. Por este medio, parte de la energía de velocidad del liquido se convierte en presión estática.
Bombas difusor
(Fig. 23) los paletas direccionales estacionarios rodean el motor
o impulsor en una bomba del tipo difusor. Esos pasajes con expansión gradual cambian la dirección del flujo del liquido y convierten la energía de velocidad a columna de presión.
Bombas turbina
También se conocen como bombas de vórtice, periféricas y regenerativas; en este tipo se producen remolinos en el liquido por medio de los paletas a velocidades muy altas dentro del canal anular en el que gira el impulsor. El liquido va recibiendo impulsos de energía (Fig. 24). La bomba del tipo difusor de pozo profundo, se llaman frecuentemente bombas turbinas.
Bombas de flujo mixto y axial
Para ver los gráficos seleccione la opción "Descargar" del menú superior
Las bombas de flujo mixto (Fig. 25) desarrollan su columna parcialmente por fuerzas centrífugas y parcialmente por el impulsor de los paletas sobre el liquido. El diámetro de descarga de los impulsores es mayor que el de entrada. Las bombas de flujo axial (Fig. 26) desarrollan su columna por la acción de impulso o elevación de las paletas sobre el liquido. El diámetro del impulsor es el mismo en el lado de succión y en el de descarga. Una bomba de impulsor es un tipo de bomba axial.
Clasificación según aplicación
Aun cuando no todas las bombas centrífugas están clasificadas por un nombre genérico que designa su aplicación final, un gran numero de ellas incluyen este termino relacionado con su servicio. Así, las bombas centrífugas pueden llamarse de alimentación de calde4ra, de propósito general, de sumidero, pozo profundo, de refinería, de circulación, etc. En general, cada una tiene características especificas de diseño, así como los materiales que el constructor recomienda para el servicio particular.
Hay aun otra subdivisión basada en las características estructurales y generales; tales como unidades horizontales y verticales, diseños de acoplamiento directo, impulsores de succión simple y doble, carcasas divididas horizontalmente, etc.
Diseños normales típicos de bombas

Bombas de propósito general: estas (Fig. 27) están construidas generalmente para manejar líquidos frescos y limpios a temperaturas ambiente o moderadas. Generalmente de un solo paso, estas unidades pueden ser de carcasa divida y aditamentos normales; igualmente buenas para un gran numero de servicios. Algunas son de varios impulsores, mientras que otras manejan líquidos que contienen sólidos en suspensión.
Para ver los gráficos seleccione la opción "Descargar" del menú superior
Bombas múltiples
Las unidades horizontales de este diseño (Fig. 28), están construidas con carcasa ya sea del tipo barril o del tipo horizontalmente dividido. La carcasa del tipo barril se usa mas comúnmente en diseños de alta presión con cuatro o mas pasos, mientras que la carcasa dividida se usa para presiones que varían desde bajas hasta moderadamente altas con cualquier numero de pasos.
Bombas acopladas directamente
Estas (Fig. 29) combinan la bomba y su motor en una sola unidad, proporcionando una bomba compacta, maciza y eficiente.
Bombas inatascables
Pueden o no tener impulsores de paleta, y estas unidades manejan líquidos de drenaje, de proceso en fabricas de papel, líquidos viscosos y otros similares que contengan sólidos.
Bombas turbinas regenerativas
Estas tienen limitaciones perfectamente definidas en cuanto a columna y capacidad mas allá de las cuales no puede competir económicamente con la bomba centrífuga usual. Sin embargo, dentro de su margen de aplicación tienen ventajas apreciables, incluyendo buenas características de succión, capacidad muy elevada y buena eficiencia.
PROBLEMAS DE FUNCIONAMIENTO DE LAS BOMBAS
Para obtener los resultados deseados, las características de las bombas deben ser compatibles con las condiciones reales de funcionamiento. Antes de aplicar una bomba, conviene hacer un análisis de las características del sistema de funcionamiento, en el cual deben tenerse en cuenta los siguientes factores:
  1. Capacidad con descripción de las posibles variaciones
  2. Presiones máxima y mínima, pulsaciones y variaciones
  3. Plan completo de las condiciones de succión
  4. Margen de la temperatura de funcionamiento
  5. Propiedades del liquido: densidad, viscosidad, corrosión, abrasión y comprensibilidad
  6. Accionamiento y control
  7. Clasificación del servicio en continuo o intermitente
Los caracteres mecánicos de las bombas son impuestos por las condiciones de la operación, como presiones, temperaturas, condiciones de succión y liquido bombeado. Los caracteres hidráulicos son inherentes a cada tipo de bomba y están influidos por la densidad, viscosidad, tipo de accionamiento y tipo de control.
El diseño mecánico se basa en la presión que ha de manejarse y es importante la revisión de los valores máximos, cargas de choque y variaciones de presión antes de elegir la bomba. Los materiales utilizados para las partes componentes deben determinarse de acuerdo con las exigencias de resistencia mecánica, resistencia a la corrosión y a la erosión o a la combinación de estas. Las velocidades en los pasajes de la bomba son mucho mas altas que las que se dan en las tuberías y vasijas de presión, con la consecuencia de que los efectos corrosivos o abrasivos del liquido. Es posible que la duración de la bomba sea muy limitada a causa del alto grado de corrosión y erosión, y a veces esta justificado el empleo de materiales resistentes en las zonas criticas. También las temperaturas por encima de 120º C o por debajo de –18º C pueden afectar a la construcción. Las temperaturas elevadas exigen el enfriamiento por agua de los cojinetes y las cajas de empaquetadura; las bajas temperaturas requieren materiales de resistencia adecuados a la temperatura de funcionamiento.
La mayor parte de las dificultades en las bombas provienen de las incorrectas condiciones de succión mas que de otra causa. La perdida de succión, la vaporización, el relleno parcial o la cavitación, llevan consigo una carga normal sobre la bomba y ocasionan alto costo de mantenimiento poca duración y funcionamiento irregular.
Los líquidos limpios fríos y no corrosivos con acción lubricante no presentan problemas. Los líquidos no lubricantes, como el propano, y las mezclas abrasivas, como los catalizadores pulverizados, deben mantenerse fuera del contacto con las empaquetaduras por un liquido aislante inyectado en el anillo de engrase o dentro de un casquillo de inyección para lubricar la empaquetadura y evitar que los sólidos se incrusten en ella.
La viscosidad del liquido que se bombea afecta igualmente a la potencia requerida y a la velocidad de bombeo. Las bombas de vaivén trabajan muy bien los líquidos viscosos pero pueden ser necesarias válvulas extra de succión para reducir las perdidas y la bomba puede funcionar a una velocidad mas baja. Las bombas rotatorias de alta presión no son económicas para líquidos extremadamente viscosos. La capacidad y el diseño de las bombas centrífugas se basan en una viscosidad igual a la del agua y son muy sensibles al aumento de viscosidad.
Las velocidades relativamente altas conducen a perdidas por turbulencia.

miércoles, 16 de abril de 2014

Aplicaciones del Principio de Bernoulli

Ecuación de Bernoulli y la Primera Ley de la Termodinámica

De la primera ley de la termodinámica se puede concluir una ecuación estéticamente parecida a la ecuación de Bernouilli anteriormente señalada, pero conceptualmente distinta. La diferencia fundamental yace en los límites de funcionamiento y en la formulación de cada fórmula. La ecuación de Bernoulli es un balance de fuerzas sobre una partícula de fluido que se mueve a través de una línea de corriente, mientras que la primera ley de la termodinámica consiste en un balance de energía entre los límites de un volumen de control dado, por lo cual es más general ya que permite expresar los intercambios energéticos a lo largo de una corriente de fluido, como lo son las pérdidas por fricción que restan energía, y las bombas o ventiladores que suman energía al fluido. La forma general de esta, llamémosla, "forma energética de la ecuación de Bernoulli" es:

\frac{{V_1}^2}{2 g}+\frac{P_1}{\gamma}+z_1\frac{g}{g_c}+ W = h_f + \frac{{V_2}^2}{2 g}+\frac{P_2}{\gamma}+z_2\frac{g}{g_c}
donde:
  • γ es el peso específico (γ = ρg).
  • W es una medida de la energía que se le suministra al fluido.
  • hf es una medida de la energía empleada en vencer las fuerzas de fricción a través del recorrido del fluido.
  • Los subíndices 1 y 2 indican si los valores están dados para el comienzo o el final del volumen de control respectivamente.
  • g = 9,81 m/s2 y gc = 1 kg·m/(N·s2)

Suposiciones

La ecuación arriba escrita es un derivado de la primera ley de la termodinámica para flujos de fluido con las siguientes características.
  • El fluido de trabajo, es decir, aquél que fluye y que estamos considerando, tiene una densidad constante.
  • No existe cambio de energía interna.

[Demostración

Escribamos la primera ley de la termodinámica con un criterio de signos termodinámico conveniente:

w + q = \Delta h + \Delta \frac{V^2}{2} + g \Delta z
Recordando la definición de la entalpía h = u + Pv, donde u es la energía interna y v se conoce como volumen específico v = 1 / ρ. Podemos escribir:

w + q = \Delta u + \Delta \frac{P}{\rho} + \Delta \frac{V^2}{2} + g \Delta z
que por la suposiciones declaradas más arriba se puede reescribir como:

w + q = \frac{P_2}{\rho} - \frac{P_1}{\rho} + \frac{{V_2}^2}{2} - \frac{{V_1}^2}{2} + g (z_2 - z_1)
dividamos todo entre el término de la aceleración de gravedad

\frac{w}{g} + \frac{q}{g} = \frac{P_2}{\gamma} - \frac{P_1}{\gamma} + \frac{{V_2}^2}{2 g} - \frac{{V_1}^2}{2 g} + z_2 - z_1
Los términos del lado izquierdo de la igualdad son relativos a los flujos de energía a través del volumen de control considerado, es decir, son las entradas y salidas de energía del fluido de trabajo en formas de trabajo (w) y calor (q). El término relativo al trabajo w / g consideraremos que entra al sistema, lo llamaremos h y tiene unidades de longitud, al igual que q / g, que llamaremos hf quién sale del sistema, ya que consideraremos que sólo se intercambia calor por vía de la fricción entre el fluido de trabajo y las paredes del conducto que lo contiene. Así la ecuación nos queda:

h -h_f= \frac{P_2}{\gamma} - \frac{P_1}{\gamma} + \frac{{V_2}^2}{2 g} - \frac{{V_1}^2}{2 g} + z_2 - z_1
o como la escribimos originalmente:

\frac{{V_1}^2}{2 g}+\frac{P_1}{\gamma}+z_1 + h = h_f + \frac{{V_2}^2}{2 g}+\frac{P_2}{\gamma}+z_2
Así, podemos observar que el principio de Bernoulli es una consecuencia directa de la primera ley de la termodinámica, o si se quiere, otra forma de esta ley. En la primera ecuación presentada en este artículo el volumen de control se había reducido a tan solo una línea de corriente sobre la cual no habían intercambios de energía con el resto del sistema, de aquí la suposición de que el fluido debería ser ideal, es decir, sin viscosidad ni fricción interna, ya que no existe un término hf entre las distintas líneas de corriente.

Aplicaciones del Principio de Bernoulli

Airsoft
Las réplicas usadas en este juego suelen incluir un sistema llamado HopUp que provoca que la bola sea proyectada realizando un efecto circular, lo que aumenta el alcance efectivo de la réplica. Este efecto es conocido como efecto Magnus, la rotación de la bola provoca que la velocidad del flujo por encima de ella sea mayor que por debajo, y con ello la aparición de una diferencia de presiones que crea la fuerza sustentadora, que hace que la bola tarde más tiempo en caer.
Chimenea
Las chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayor es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.
Tubería
La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.
Natación
La aplicación dentro de este deporte se ve reflejado directamente cuando las manos del nadador cortan el agua generando una menor presión y mayor propulsión.
Movimiento de una pelota o balón con efecto
Si lanzamos una pelota o un balón con efecto, es decir rotando sobre sí mismo, se desvía hacia un lado. También por el conocido efecto Magnus, típico es el balón picado, cuando el jugador mete el empeine por debajo del balón causándole un efecto rotatorio de forma que este traza una trayectoria parabólica. Es lo que conocemos como vaselina.
Carburador de automóvil
En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.
Flujo de fluido desde un tanque
La tasa de flujo está dada por la ecuación de Bernoulli.
Dispositivos de Venturi
En oxigenoterapia, la mayor parte de sistemas de suministro de débito alto utilizan dispositivos de tipo Venturi, el cual esta basado en el principio de Bernoulli.

 

jueves, 10 de abril de 2014

Trabajo y Potencia

Trabajo y Potencia


La física define como trabajo el desplazamiento de un cuerpo por efecto de una fuerza.

El trabajo se mide en términos numéricos, multiplicando la fuerza ejercida por la distancia recorrida. Es decir, si movemos un cuerpo con la fuerza de un kilógramo para que recorra 1 metro, estamos efectuando un trabajo de 1 kg x metro. A mayor fuerza ejercida mayor trabajo efectuado. Cuando se realiza trabajo y la trayectoria es circular, como es el caso de un motor, el cálculo del trabajo se expresa:
Trabajo = Fuerza x 2¶r, donde ¶ es una constante (3,1416) y r es el radio de giro.

Potencia PS y HP

La potencia es trabajo mecánico que incorpora en su valor el parámetro tiempo. Es decir, la potencia se expresa con un número que cuantifica el trabajo efectuado durante un lapso de tiempo. Mientras más rápido se realiza el trabajo la potencia que se desarrolla es mayor.
La medida original de potencia se expresa en caballos de fuerza o PS (Pferdestärke), y proviene del sistema métrico alemán.
El valor de 1 PS equivale a levantar 75 kilógramos a 1 metro de altura en 1 segundo, (75 kg x metro/segundo). Su equivalencia en el sistema de medida inglés es el HP (Horsepower).
El valor de un PS se diferencia levemente del HP: 1 PS = 0.9858 HP.
1 HP es igual a levantar 1 libra a 550 pies de altura en 1 segundo.
La capacidad de ejercer torque y potencia en un motor es limitada. Depende de la fuerza de expansión que logran los gases en el cilindro. El torque máximo se consigue cuando el rendimiento volumétrico (% de llenado de los cilindros) es máximo.

La potencia en términos generales, expresa la capacidad para ejecutar un trabajo en el menor tiempo posible. Una fuente de energía que puede mover 1 kg de peso por una distancia de 1 metro en un sólo segundo es más 'potente' que otra capaz de desplazar el mismo peso en 2 segundos.
©dr.croxwell 2004-10. Prohibida la reproducción con propósito comercial.

miércoles, 9 de abril de 2014

COJINETES

Cojinete


Árbol de un motor de barco con dos cojinetes deslizantes radiales.
Un cojinete en ingeniería es la pieza o conjunto de ellas sobre las que se soporta y gira el árbol transmisor de momento giratorio de una máquina.

Cojinete de deslizamiento radial, por partes:
el cilintro claro es donde iría el árbol,
la tapa negra desmontable para la lubricación (fricción mixta).
De acuerdo con el tipo de contacto que exista entre las piezas (deslizamiento o rodadura), el cojinete puede ser un cojinete de deslizamiento o un rodamiento.

Rodamiento de rodillos (cojinete de rodamiento).

Cojinete de rodadura o "rodamiento"

Un rodamiento o cojinete de rodadura es un tipo de cojinete, que es un elemento mecánico que reduce la fricción entre un árbol y las piezas conectadas a éste por medio de rodadura, que le sirve de apoyo y facilita su desplazamiento.

Cojinete de deslizamiento

El cojinete de deslizamiento es junto al rodamiento un tipo de cojinete usado en ingeniería.
Un cojinete de deslizamiento es un cojinete en el que dos casquillos tienen un movimiento en contacto directo, realizándose un deslizamiento con fricción, buscando que esta sea la menor posible. La reducción del rozamiento se realiza según la selección de materiales, y lubricantes. Los lubricantes tienen la función de crear una película lubricante que separe los dos materiales, evitando el contacto directo.
Al tocarse las dos partes, que es uno de los casos de uso más solicitados de los cojinetes de deslizamiento, el desgaste en las superficies de contacto limita la vida útil. La generación de la película lubricante que separa por una lubricación completa requiere un esfuerzo adicional para elevar la presión, y que se usa sólo en máquinas de gran tamaño para grandes cojinetes de deslizamiento.
La resistencia al deslizamiento provoca la conversión de parte de la energía cinética en calor, que desemboca en las partes que sostienen los casquillos del cojinete.